Research Progress on Printed Air-fed Array Antennas

Professor Wen Xun ZHANG

State Key Laboratory of Millimeter Waves
Southeast University, Nanjing, 210096, CHINA
wxzhang@ieee.org
Contents

♦ Introduction 2
♦ Fresnel Zone Plate Antennas 2
♦ Reflectarray Antennas 4
♦ Transmitarray Antennas 1
♦ Fabry-Perot Resonator Antennas 2
♦ Compound Air-Fed Array Antennas 8
♦ Conclusion 1
HIGH-GAIN ANTENNAS

Mirror Ant.
- High efficiency & wideband with simple feeding
- Curvature structure less flexibility

Traditional Ant.
- Planar (printed) structure with reconfigurable beam
- Complex feed-network less efficiency & bandwidth

Array Ant.
- Towered feed with supporter
- Always

Simple feeding
Printed Air-fed Array Antenna
To perform co-phased aperture by individual compensation of separated elements
To directly excite all elements by a single-feed illumination without complex network

Planar structure
Existed Shortage
Middle
- Efficiency & bandwidth

Need to be improved!
Could be avoid?
Introduction

Full forward reflecting with very less backward overflow

Feed-blockage in the front results in aperture efficiency drop

Besides Off-Set

To avoid blockage effect

Decrease feed cross-section

Utilize polarization isolation

Polar-twisted TSA feed

Reflector Ant.

Both Mirror & Air-fed array

Lens Ant.

Most forward transmitting with unavoidable backward reflection

No blockage existing since feed is behind the aperture

To reuse backward reflection

Place reflector behind feed

Flat the interface of lens

Compound Air-fed Array
FZP Antennas

Structural evolution

<table>
<thead>
<tr>
<th>simple lens</th>
<th>Fresnel lens</th>
<th>phase-reversing lens</th>
<th>planar lens</th>
</tr>
</thead>
</table>

Practical structure

<table>
<thead>
<tr>
<th>FZP Lens</th>
<th>Transparent center</th>
<th>FZP Reflector</th>
<th>Opaque center</th>
</tr>
</thead>
</table>

Conceptual design

Stepped ray-length $r_n = (F+n\lambda/2)$ from focus to ring-edges

Transparent & Opaque zones alternatively arranging

Diffracted-field contribution

$$\propto \text{Fresnel Integration on each active-zones}$$

$$FI = \int_{\text{active zones}} \exp(-j\omega \tau^2 / 2) d\tau$$

$$= C(\omega) - jS(\omega)$$

$$\omega_n = 2\sqrt{(r_n - F) / \lambda}$$

Full-integrated four-layer FZP Lens Antenna

2 pairs of 2-layer
- 2 pairs for enhancing forward gain
- 2-layer for suppressing back-lobe

Fed by stacked circular-patch with parasitic-ring

Spectral-domain analysis with
- Vector Hankel-transform
- S-D Immittance method

4-ring sample
- X-band 15 % BW for $(G \geq 18 \text{ dBi} \& \ VSWR \leq 2:1)$
- $G_{\text{max}} = 21 \text{ dBi}$, $\text{SLL} \leq -18 \text{ dB}$, $F/B \geq 11 \text{ dB}$

Sizes:
- $F = 9.15\lambda$
- $D \approx 18\lambda$
Traditional Zoning Rule
by $\lambda/2$ stepping

Improved Zoning Rule
by co-phase summation

Practical Zoning Application

For 1-D (Strip) FZPR with Screen

More contribution from Screen:
Gain enhancement $= +2.11$ dB

For 2-D (Ring) FZPR with Screen

Based on complicated integration:
Gain enhancement $\leq +1$ dB

Gain enhancement $= +0.97$ dB

The contribution depends both Field strength & Ring-area of each zones, it lights the weightiness of the 1st zone as that in 1-D structure, and more obvious for longer focal-length with more rings.
Basic Principle

- **Ray-path phase** by \(k \Delta r_n \)
- **Reflection phase** \(\phi_{R,n} + \phi_{F,n} \)

Characters

- **Dynamic range** \((\phi_R)_{\text{max}} \)
- **Frequency dependence** \(\phi_{R,n}(f) \)
- **Phase pattern of feed** \(\phi_{F,n} \approx \text{const.} \)

Compensation

- Element with phase compensation

Structural Feature

- **Structure**
 - Planar printed array
 - Focus-length \(\approx \) Aperture size
 - Towered feed with supporter

Disadvantages

- ★ Narrower Bandwidth
- ★ Lower Efficiency

Topics for Developing

Improvement Schemes

- Broadband-feed for Illuminative Pattern
- Broadband-element for Phase Compensation
- Avoiding \(+2\pi\) repeat by Phase Dynamic-range

- Aperture-distribution
 - Array optimization with Shaped feed
- Avoiding blockage
 - Normal illumination with Polar-transform

Enhancing Efficiency

- Extending Bandwidth
RA Antennas

Broadband TSA feed
Traveling wave radiator

Thin physical cross-section

VSWR ≤ 2:1
5.2~12.8 GHz

Feed pattern
f = 10 GHz

~ 74°

Bandwidth Broadening Technology

Stacked Patch element

Double-/ Triple-layer Square-/ Rectangular Patch

Square-patches

Rectangular Patch

A_a = A_y = 17 mm (= 0.57λ_0)
Aspect-ratio τ = s_y / s_x

The ϕ is almost independent on τ

Phase compensated by Patch’s size
(ϕ_{R,n})_{max} = 450° ~ 750°
Orthogonal Polar-Transform

Reflection Phase-difference

\[\Delta \phi = \phi_y - \phi_x \]

- \(\frac{\pi}{2} \)
- 0
- \(\frac{\pi}{2} \)
- \(\pm \pi \)

Reflected

<table>
<thead>
<tr>
<th>Reflected</th>
<th>RHCP</th>
<th>Co-LP</th>
<th>LHCP</th>
<th>X-LP</th>
</tr>
</thead>
</table>

Avoiding feed-blockage

- \(\Delta G_{\text{OPT/non-OPT}} \) up to 3.9 dB
- for 37-element 3-layer RA
 - \(G_{\text{peak}} = 18 \text{ dBi} \)
- \(\Delta G \leq -1.6 \text{ dB} \) up to 26.8 %
- for 489-element 2-layer RA
 - \(G_{\text{peak}} = 27.6 \text{ dBi} \)

Arbitrary polarized-state may be performed!
Efficiency Enhancing Technology

Feed-Pattern Shaping

Requires quasi-uniform aperture distribution

↓

Enhance oblique illumination
Restrict normal illumination
Suppress over-flow leaking

↓

Expects a saddle-pattern with low leakage loss
by Structural Synthesis

Take Phase-Pattern \(\phi_F(\theta_n) \) into the compensation account

Improves 1-D Aperture efficiency

- 100%
- 83.7%
- 70.6%

Simulated & Measured patterns

E-plane (10 GHz)

Coupled TSA

Choke to suppress side-lobes
TA Antennas

Comparison of Schemes

TA based on multilayer interference
- **with** forward summation - backward canceling as a Filter,
- **but** lower efficiency due to residual reflection, impossible to steer the beam orientation.

TA based on receiving-transmitting
- **with** delay-line connection as a Repeater,
- **but** complicated transmission structure results in trouble for design & fabrication.

Select R-T type for better performances!

TA with Directly corner-fed
- **Stacked square-patch**
- \(F/D = 0.5 \) TSA-feed

TA with Proximity-fed
- **U-slotted rectangle-patch**
- \(F/D = 0.5 \) TSA-feed

Main performances

<table>
<thead>
<tr>
<th>Data</th>
<th>Freq. range</th>
<th>(BW_{\Delta G-3dB})</th>
<th>(G_{\text{max}}) (dB)</th>
<th>XPL (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated</td>
<td>(8.2~10.2)GHz</td>
<td>21.6 %</td>
<td>16.3</td>
<td>(-12.5)</td>
</tr>
<tr>
<td>Measured</td>
<td>(8.6~11.0)GHz</td>
<td>24.3 %</td>
<td>15.4</td>
<td>(-10.9)</td>
</tr>
</tbody>
</table>

Comparing to RA
- Broader bandwidth & Lower SLL
- Lower Gain & Higher cost
- Same Towering structure

How to coordinate the merits of RA & TA? How to avoid the towered structure?
Principle & Schemes

Consists of

- **a cover** with high-reflectivity in the front
- **a base** with full-reflection in the back
- **a feed** with forward radiation embedded into a resonant spacing

Performances:

- **High Gain**

 - As high as required by increasing Reflectivity γ & Spacing; $G \approx (1 + \gamma) / (1 - \gamma)$

 - Is restricted in Practice by Conductivity & Leaking due to finite plate-size.

- **Narrow BW**

 - Narrow band for Gain-drop due to the Resonance;

 - Narrow band for Feed-matching when employing Simple-feed (patch/dipole).

 A common bandwidth must be specified!

 - Usually, they does Not Coincide!

- **Poor Efficiency**

 - Poor uniformity of aperture-field distribution for enlarging the plate size;

 - Serious leakage of lateral-wave for enlarging the spacing.

- **Low Profile**

 - Comparing to the RA & TA with towering feed structure.

Improvements:

- **Cover**

 Broadband single-/double-layer FSS of printed patches

- **Base**

 PEC or broadband AMC (artificial magnetic conductor) as Grounded FSS

- **Feed**

 Broadband wide-slotted plate (MS-fed) or U-slotted patch (Coaxial fed) in cavity environment

FSS cover

- Inversely printed on superstrate
- For high reflectivity

Wide-slot radiator

- Ground plate without substrate
- For broad band-width & broad-beamwidth

U-slotted patch

- Ground plate with substrate
- For low f ~sensitivity

AMC surrounding feed

- 11.7 mm (0.55 λ) Height
Design & Comparison

Optimized sizes for different combination of Cover/ Radiator/ Base

----- Pay more attention to Coincide VSWR & Directivity bands with together

\[f_r = 14 \text{ GHz}, \quad \lambda_r = 21.43 \text{ mm} \]

<table>
<thead>
<tr>
<th>F-P Resonator Structure [Aperture area = (62 mm)²]</th>
<th>(D) (dBi)</th>
<th>(\eta_A) (%)</th>
<th>Height (mm / (\lambda))</th>
<th>Beamwidth (E-/H-plane)</th>
<th>SLL (dB) (E-/H-plane)</th>
<th>F/B (dB)</th>
<th>BW (%) Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSS//U-slotted patch//PEC</td>
<td>18.96</td>
<td>64.2</td>
<td>13.90/0.65</td>
<td>17.1°/16.1°</td>
<td>−17.0/−16.3</td>
<td>25.52</td>
<td>7.90</td>
</tr>
<tr>
<td>FSS//U-slotted patch//AMC</td>
<td>18.42</td>
<td>58.3</td>
<td>11.70/0.55</td>
<td>18.3°/18.9°</td>
<td>−18.0/−17.3</td>
<td>23.85</td>
<td>5.49</td>
</tr>
<tr>
<td>FSS//Wide-slot//PEC</td>
<td>19.60</td>
<td>87.0</td>
<td>20.04 0.94</td>
<td>15.5°/17.2°</td>
<td>−16.1/−18.3</td>
<td>21.20</td>
<td>3.75</td>
</tr>
<tr>
<td>EBG/Slab//U-slotted patch//PEC</td>
<td>17.83</td>
<td>57.7</td>
<td>20.24 0.94</td>
<td>18.1° / 18.6°</td>
<td>−15.1 / −16.1</td>
<td>23.14</td>
<td>7.69</td>
</tr>
<tr>
<td>EBG/Slab//U-slotted patch//AMC</td>
<td>17.75</td>
<td>56.6</td>
<td>18.24 0.85</td>
<td>18.8° / 19.6°</td>
<td>−15.5 / −17.3</td>
<td>23.50</td>
<td>5.64</td>
</tr>
<tr>
<td>Slab/EBG// Wide-slot//PEC</td>
<td>18.55</td>
<td>68.0</td>
<td>28.31/1.32</td>
<td>15.5° / 16.3°</td>
<td>−13.0 / −16.6</td>
<td>22.79</td>
<td>5.91</td>
</tr>
<tr>
<td>EBG/Slab// Wide-slot//PEC</td>
<td>18.50</td>
<td>68.0</td>
<td>27.01/1.26</td>
<td>15.4° / 17.0°</td>
<td>−12.8 / −16.7</td>
<td>26.69</td>
<td>6.84</td>
</tr>
</tbody>
</table>

Using **FSS-cover** always: *thinning structure, higher Gain, & broader common BW*;

Using **AMC-base** always: *thinnest structure, lower Gain, & narrower common BW*;

Comparing **Wide-slot feed** to U-slotted patch: *higher Gain & narrower common BW*.

Broadening common bandwidth of F-P R Ant. is a major & essential challenge
Principle of CAFA

The short focus-length of thin FPR antenna results in serious phase difference on aperture!

The phase compensation seems necessary!

Comparing to the central ray

- Adjusting spacing to keep co-phase superposition
- Self-compensation effect of frequency responses

For phase compensation of illuminated phase-delay

patch elements (tapered sizes)

patch elements (inversely tapered sizes)

For balance reflective phase between cover- & base- element

\[\Sigma \phi_v \approx 0 \]

\[\Sigma \phi_v = 0 \]

\[\Sigma \phi_v \approx 0 \]
Principle of Comparison

A modified **reflectarray** with a backfire feed

--- Near-field illumination and short focal length

Repeatedly utilizing the feed-blockage of RA

A modified **transmitarray** with an array feed

--- Near-field illumination and short focal length

Forming co-phase wave illuminating the TA

A modified **Fabry-Perot array** with an patch feed

--- Quasi-period of tapered element for bandwidth extending

Correcting phase for individual ray in F-P R

COMPOUND PRINTED AIR-FED ARRAY
Performance comparison with Folded Reflectarray

Southeast University
- Proposer: Cover
- Proposer: Base
- Grid / Filter
- Tapered Reflectarray
- Cover
- Baseline
- Grid / Filter
- Tapered Reflectarray

<table>
<thead>
<tr>
<th>Profile Sizes</th>
<th>University of Ulm</th>
</tr>
</thead>
<tbody>
<tr>
<td>70×63×13 (mm)</td>
<td>150×150×25 (mm)</td>
</tr>
</tbody>
</table>

Simulated data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Southeast University</th>
<th>University of Ulm</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>14.0 GHz</td>
<td>27.6 GHz</td>
</tr>
<tr>
<td>D_{max}</td>
<td>19.53 dBi</td>
<td></td>
</tr>
<tr>
<td>G_{max}</td>
<td>19.41 dBi</td>
<td>30.8 dBi / 29.5 dBi</td>
</tr>
<tr>
<td>η_{aper}</td>
<td>74.36 %</td>
<td></td>
</tr>
<tr>
<td>η_{Ant}</td>
<td>72.33 %</td>
<td>50.24 % / 37.24 %</td>
</tr>
<tr>
<td>SLL</td>
<td>≤ -17.3 dB</td>
<td>≤ -20 dB / -21 dB</td>
</tr>
<tr>
<td>BW$_G$</td>
<td>9.66 %</td>
<td>9.32 % / 2.90 %</td>
</tr>
<tr>
<td>BW$_{com.}$</td>
<td>7.99 %</td>
<td></td>
</tr>
</tbody>
</table>

Measured results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Southeast University</th>
<th>University of Ulm</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{max}</td>
<td>19.41 dBi</td>
<td></td>
</tr>
<tr>
<td>G_{max}</td>
<td>29.5 dBi</td>
<td></td>
</tr>
<tr>
<td>η_{aper}</td>
<td>72.33 %</td>
<td></td>
</tr>
<tr>
<td>η_{Ant}</td>
<td>72.33 %</td>
<td></td>
</tr>
<tr>
<td>SLL</td>
<td>≤ -17.3 dB</td>
<td>≤ -20 dB / -21 dB</td>
</tr>
<tr>
<td>BW$_G$</td>
<td>9.32 % / 2.90 %</td>
<td></td>
</tr>
<tr>
<td>BW$_{com.}$</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
Tapered FSS/AMC with U-slotted patch for 14 GHz

<table>
<thead>
<tr>
<th>FSS/AMC Array</th>
<th>12×13</th>
<th>15×16</th>
<th>18×19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Height (mm)</td>
<td>13.0</td>
<td>23.4</td>
<td>22.6</td>
</tr>
<tr>
<td>Resonant mode</td>
<td>Dominate</td>
<td>1st higher</td>
<td>1st higher</td>
</tr>
<tr>
<td>Peak Gain (dBi)</td>
<td>19.53</td>
<td>21.86</td>
<td>24.39</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>74.4</td>
<td>66.3</td>
<td>45.3</td>
</tr>
<tr>
<td>Common BW (%)</td>
<td>7.99</td>
<td>4.76</td>
<td>1.63</td>
</tr>
<tr>
<td>E-/H- Beam (°)</td>
<td>18.2 / 17.8</td>
<td>12.8 / 12.6</td>
<td>8.8 / 7.9</td>
</tr>
<tr>
<td>E-plane SLL (dB)</td>
<td>−17.3</td>
<td>19.7 / 18.7</td>
<td>16.5 / 12.9</td>
</tr>
</tbody>
</table>

* **Gain** enhanced due to Aperture enlargement
* **Height** increased for keep illuminated angle
* **Efficiency** dropped due to tapered distribution
* **Bandwidth** narrowed due to sharp mis-resonance
Recent progress – II Sub-wavelength Resonance Mechanism

Phase of: Reflection Ray-path
Resonant condition $\Phi(f) = \theta(f)$
from: Base Cover Spacing

$\phi_1(f) + \phi_2(f) = 4\pi H/\lambda \quad (N = 0)$

The location of intersected points correspond to each resonant spacing:

<table>
<thead>
<tr>
<th>Resonant points</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_1^{(o)}(p)$</td>
<td>112.6</td>
<td>74.9</td>
<td>-18.5</td>
<td>-82.8</td>
</tr>
<tr>
<td>H/λ_0</td>
<td>0.43</td>
<td>0.38</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>H (mm)</td>
<td>9.3</td>
<td>8.1</td>
<td>5.5</td>
<td>3.2</td>
</tr>
</tbody>
</table>

$p \sim$ patch / period sizes

δ is more sensitive to f

Lower H

\downarrow coupling between cover & base

\downarrow feed illuminated area

Narrower Bandwidth

$\left\{\begin{array}{l}
-3$ dB gain-drop
VSWR$\leq2.0:1
\end{array}\right.$

\downarrow Lower Gain/Efficiency

0.15λ_0

18.4 dBi
Recent progress – III

Polygonal Array Architecture

Bandwidth Broadening

Octagonal aperture
as corner-cut & side-widen rectangle

- Common BW: 7.99 %
- Peak Gain: 19.53 dBi
- \(\eta_{aper} = 74.4\% \)

Hexagonal array
as honeycomb for sub-array element usage

- Common BW: \(8.20/7.54 \) %
- Peak Gain for \(\pm 3\)dB:
 - 19.53 dBi \(\eta_{aper} = 74.4\% \)
 - 19.31 dBi \(\eta_{aper} = 79.1\% \)
 - 19.44 dBi \(\eta_{aper} = 81.5\% \)
 - 20.08 dBi \(\eta_{aper} = 63.7\% \)

- Slightly extending 10.34 %
- Slightly extending 8.15 %
- Extending 9.38 %

Sub-array Technique

- VSWR \(\leq 2.0:1 \)
- Gain-drop \(\leq 2\) dB
- SLL \(\leq -15\) dB

- Simulated/Measured

- Peak Gain: 17.11/16.59 dBi
- Efficiency: 70.0/62.1 %

Broadband Stacked-patch feed
Recent progress – IV Sub-Array Combination (G*BW)

7-subarray combination with tapered excitation
(power ratio: 1: 6×1/6)

Simulated/measured performances:
\[
\begin{align*}
G_{\text{peak}} & = 22.87/22.51 \text{ dBi} \quad \text{Sub-array} \\
& \quad @ 9.6/9.7 \text{ GHz} \\
\eta_{\text{peak}} & = 37.7/34.7 \% \quad (17.11/16.59) \\
\text{BW}_{\text{common}} & = 9.63/8.28 \% \quad (70.0/62.1) \\
& \quad \text{for } \Delta G \leq -3 \text{ dB,} \\
& \quad \text{VSWR} \leq -10 \text{ dB,} \\
& \quad \text{SLL} \leq -15 \text{ dB}
\end{align*}
\]

If a 7-subarray combination with uniform excitation (power ratio: 7 ×2/7) then
\[G_{\text{peak}} = 25.9 \text{ dBi, } \text{SLL} \leq -10.0 \text{ dB}\]

Alternative sub-array combination without network employed six parasitic-(stacked) patches in in developing.
Circular-Polarized Radiation

\[E^x_{\text{out}} = E^y_{\text{out}} \]
\[\theta^x - \theta^y = 90^\circ \]

Circularly Polarization

<table>
<thead>
<tr>
<th>Frequency (central)</th>
<th>Gain (Peak)</th>
<th>AR @ (f_0)</th>
<th>AR in HPBW</th>
<th>BW AR>3 dB</th>
<th>RL</th>
<th>Efficiency (aperture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4 GHz</td>
<td>19.9 dBi</td>
<td>< 1.0 dB</td>
<td>< 2.0 dB</td>
<td>1.9 %</td>
<td><-10 dB</td>
<td>81 %</td>
</tr>
</tbody>
</table>
Printed Air-fed Array Antennas have constituted a flourishing family, almost every kinds had been concerned in SEU;

The CAFA antenna is a new member with good Performances, it is attractive in various Application aspects;

The contradiction of Gain with Bandwidth in impedance-matching has been extended to BW in Gain-drop for high-gain antennas;

An Gain limitation of CAFA antenna with thin structure is to balance the size & efficiency, its solution is to act as a Sub-array.

The Circular-polarized radiation can be performed for CAFA by employing mushroom-type base with rectangular patches.

Thanks!